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We’ve got a working understanding of expected utility theory, now we
need an account of probability. We’ll start with a development of the
probability calculus, which is what we need to apply probabilities in
decision theory and which is the touchstone that is agreed upon by any
philosophical account of probability. We’ll then turn to attempts to say
just what claims about probability really are saying.



Some terminology:

absolute probabilty Pr(x), e.g., Pr(ace of spades) = 1/52. Read ”the
probability of x is...”

conditional probability Pr(x |y), e.g., Pr(ace|spade) = 1
13 . Read, ”the

probability of x given y is...”



independent x is independent of y iff Pr(x) = P(x |y). For example,
Pr(ace) = 4

52 and Pr(ace on draw 2|ace on draw 1) = 3
51

if we do not replace the card after the first draw. In this
case, the statements are not independent. However,
Pr(ace on draw 2|ace on draw 1) = 4

52 if we do replace
the card after the first draw, so the statements are
independent. Things like coin flips, rolls of a die, and spins
of a roulette wheel are independent events. The outcome
of one doesn’t effect the outcome of another.

mutually exclusive x and y are mutually exclusive iff it is impossible for
both to be true, i.e., Pr(x |y) = Pr(y |x) = 0. For
example, ”the coin lands heads” and ”the coin lands tails”
are mutually exclusive statements.



The Kolmogorov Probability Axioms (Set Theoretical Notation):

Ax1. 0 ≤ Pr(X ) ≤ 1.

Ax2. Pr(Ω) = 1.

Ax3. If X ∩ Y = ∅, then Pr(X ∪ Y ) = Pr(X ) + Pr(Y ).

The Kolmogorov Probability Axioms (Logical Notation):

Ax1. 0 ≤ Pr(X ) ≤ 1.

Ax2. Pr(Ω) = 1.

Ax3. If X ∧Y are mutually exclusive, then Pr(X ∨Y ) = Pr(X ) +Pr(Y ).



Thm 1.6.1. Pr(X ) + Pr(¬X ) = 1.

Proof.

Since X ∧ ¬X are mutually exclusive, Pr(X ∨ ¬X ) = Pr(X ) + Pr(¬X )
by Ax3.

Pr(X ∨ ¬X ) = Pr(Ω) = 1 by Ax2.

Thus, Pr(X ) + Pr(¬X ) = 1. �

This gives us a rule for calculating negated statements. If we know
Pr(x), then we can calculated Pr(¬x) by subtracting Pr(x) from 1.

Ex. What’s the probability of taking more than one roll of a fair die to
get a 6? We know it’s the same as the probability of not getting a 6 on
the first roll, so that’s what we need to calculate.



Thm 1.6.2. If X and Y are logically equivalent, then Pr(X ) = Pr(Y ).

If X and Y are logically equivalent, then X and ¬Y are mutually
exclusive.

Pr(X ∨ ¬Y ) = Pr(x) + Pr(¬Y ) by Ax3.

Since X ∨ ¬Y is true (since it is equivalent to X ∨ ¬X ), we have
Pr(X ∨ ¬Y ) = 1 by Ax2.

So, (1) Pr(X ) + Pr(¬Y ) = 1.

(2) Pr(Y ) + Pr(¬Y ) = 1, Thm 1.6.1.

Since Pr(Y ) has the same value in (1) and (2), Pr(X ) = Pr(Y )



Thm 1.6.3. Pr(X ∨ Y ) = Pr(X ) + Pr(Y )− Pr(X ∧ Y ).

Proof.

Pr(X ∨ Y ) = Pr((X ∧ Y ) ∨ (¬X ∧ Y ) ∨ (X ∧ ¬Y )).

Pr(X ∨ Y ) = Pr((X ∧ Y ) ∨ (¬X ∧ Y )) + Pr(X ∧ ¬Y ) by Ax3.

Pr(X ∨ Y ) = Pr(Y ) + Pr(X ∧ ¬Y ).

Pr(X ∧ Y ) + Pr(X ∨ Y ) = Pr(Y ) + Pr(X ∧ ¬Y ) + Pr(X ∧ Y ).

Pr(X ∧ Y ) + Pr(X ∨ Y ) = Pr(Y ) + Pr(x).

Pr(X ∨ Y ) = Pr((X ∧ Y ) ∨ (¬X ∧ Y ) ∨ (X ∧ ¬Y )). �



Def 1.6.1. The conditional probability of X given Y is

Pr(X |Y ) = Pr(X∧Y )
Pr(Y ) given that Pr(Y ) 6= 0.

Ex. You roll a fair die twice. Given than the first roll is a 5, what is the
probability that the sum of the rolls will exceed 9?

Pr(T > 9|5) =
Pr(T>9∧5)

Pr(5)
= Pr(T>9)×Pr(5)

Pr(5)
=

1
3
× 1

6
1
6

= 1
3

Def 1.6.2. X is probabilistically independent of Y if and only if
Pr(X ) = Pr(X |Y ).



Thm 1.6.4. If X is probabilistically independent of Y , then
Pr(X ∧ Y ) = Pr(X )× Pr(Y ).

Proof.

This follows directly from Definitions 1.6.1 and 1.6.2.

Ex. What’s the probability of flipping 4 heads in a row?



Thm 1.6.5 (Inverse Probability Law). Pr(X |Y ) = Pr(X )×Pr(Y |X )
Pr(Y ) given

that Pr(Y ) 6= 0.

Ex. Lung Spot.

You are a physician and have just observed a spot on an X-ray of your
patient’s lung. You think that the patient might have tuberculosis and
you are considering a treatment for this disease with slightly harmful side
effects. If the patient has tuberculosis and you treat it, then you will cure
the disease. If you do not treat it, then the disease will get worse and the
patient will end up suffering considerably. You know that the probability
of observing a lung spot given that a patient has tuberculosis is 20%.
You also know that the unconditional probability of observing a lung spot
is 10% and the incidence of tuberculosis in the general population is 5%.
Do you administer the treatment?



[?] [?]

tuberculosis no tuberculosis

treatment mild harm mild harm

no treatment extreme harm no harm



Pr(LS |TB) = 0.2

Pr(LS) = 0.1

Pr(TB) = 0.05

Pr(TB|LS) = Pr(TB)×Pr(LS|TB)
Pr(LS) = 0.05×0.2

0.1 = 0.1



[ 1
10 ] [ 9

10 ]

tuberculosis no tuberculosis

treatment mild harm mild harm

no treatment extreme harm no harm



Thm 1.6.6 (Bayes’ Theorem).

Pr(X |Y ) =
Pr(X )×Pr(Y |X )

Pr(X )×Pr(Y |X )+Pr(¬X )×Pr(Y |¬X ) given that

Pr(Y ) 6= 0.

Pr(X ) is called the prior probability. This is the unconditional probability
of some event taking place.

Pr(X |Y ) is called the posterior probability. This is what we learn when
we apply Bayes’ or the Inverse Probability Law

Pr(X |Y ), i.e., the posterior probability can be used as a new prior in
further applications of the Inverse Probability Law or Bayes’ Theorem.
That is, as we gather new evidence, we can use this as our starting point
for updating our beliefs.



What if you know little about the probability of tuberculosis at the onset?

‘Washing of the priors’: Different prior probabilities will converge to the
same value after repeated application of the Inverse Probability Law or
Bayes’ Theorem on new data. So, Bayesians just say use your best hunch
to get started, then start collecting as much evidence as you can.



Ex. What Do You Learn From a Mammogram

Suppose you are a fifty year old woman who has just had her first
mammogram. Your test, unfortunately, came back positive. What does
this tell you about the likelihood that you have cancer?



Ex. What Do You Learn From a Mammogram

Suppose you are a fifty year old woman who has just had her first
mammogram. Your test, unfortunately, came back positive. What does
this tell you about the likelihood that you have cancer?

Here are some things we know. The sensitivity of mammograms is 87%,
i.e., in 87% of cases in which a person has breast cancer and undergoes
mammography, the test will spot it. Because mammograms are so
sensitive, they lack specificity. The false positive rate for mammography
for a first mammogram is about 7-12% (let’s call it 10%). We also know
that the incidence of breast cancer in women 50-54 years old in the US is
about 225 in 100,000.



Let’s summarize what we know:

Here are some things we know. The sensitivity of mammograms is 87%,
i.e., in 87% of cases in which a person has breast cancer and undergoes
mammography, the test will spot it. Because mammograms are so
sensitive, they lack specificity. The false positive rate for mammography
for a first mammogram is about 7-12% (let’s call it 10%). We also know
that the incidence of breast cancer in women 50-54 years old in the US is
about 225 in 100,000.

Pr(cancer) =?? - This is the prior probability that you have breast
cancer.

Pr(¬cancer) =??

Pr(positive|cancer) =??

Pr(positive|¬cancer) =??

Pr(cancer |positive) =?? - This is the posterior probability, i.e., the
likelihood that you have breast cancer given a positive test result. It’s the
bit we really want to know.



Let’s summarize what we know:

Here are some things we know. The sensitivity of mammograms is 87%,
i.e., in 87% of cases in which a person has breast cancer and undergoes
mammography, the test will spot it. Because mammograms are so
sensitive, they lack specificity. The false positive rate for mammography
for a first mammogram is about 7-12% (let’s call it 10%). We also know
that the incidence of breast cancer in women 50-54 years old in the US is
about 225 in 100,000.

Pr(cancer) = .002

Pr(¬cancer) = .998

Pr(positive|cancer) = .87

Pr(positive|¬cancer) = .10

Pr(cancer |positive) =?? - This is the posterior probability, i.e., the
likelihood that you have breast cancer given a positive test result. It’s the
bit we really want to know.



Pr(cancer) = .002

Pr(¬cancer) = .998

Pr(positive|cancer) = .87

Pr(positive|¬cancer) = .10

Pr(cancer |positive) =

Pr(cancer)×Pr(positive|cancer)
Pr(cancer)×Pr(positive|cancer)+Pr(¬cancer)×Pr(positive|¬cancer) =



Pr(cancer) = .002

Pr(¬cancer) = .998

Pr(positive|cancer) = .87

Pr(positive|¬cancer) = .10

Pr(cancer |positive) =

Pr(cancer)×Pr(positive|cancer)
Pr(cancer)×Pr(positive|cancer)+Pr(¬cancer)×Pr(positive|¬cancer) =

.002×.87
.002×.87+.998×.10 = .02



Let’s look at this graphically:

Figure: P(A)



Now we add another event:
P(A ∨ B) = P(A) + P(B)− P(A ∧ B)
P(AB) = P(A ∧ B) = P(A)× P(B)



What are we really looking for?

P(A|B) = P(AB)
P(B)



Now let’s look at our case:
Pr(A) = Pr(cancer) = .002 (the circle should actually be smaller)
Pr(B) = Pr(positive) = .087 (we didn’t know this before, but we can
calculate it...how?)
Pr(A|B) = Pr(cancer |positive) = .02



Pr(B) = Pr(positive) = .087 =

Pr(cancer)×Pr(positive|cancer)
Pr(cancer |positive)



Inverse Probability Law vs. Bayes’ Theorem

When is each to be used?

Both help you calculate the probability that some statement is true (or
that some event is the case) given some new information that you have
(the result of a test, experiment, observation, testimony from someone,
etc.).

Bayes’ uses information that is often more readily available to you. In our
example, since we didn’t know the prior probability of getting a positive
mammogram result, we couldn’t use the Inverse Probability Law.
However, since we knew the false positive rate, i.e., the probability of
getting a positive given that you don’t have cancer, we could use Bayes’.

We often find ourselves in similar situations: we know a conditional
probability but not an absolute probability, in those cases, Bayes’ works.
If we know the absolute probability in question, then we use the Inverse
Probability Law.



Calculating the Value of New Information:

Clark is deciding whether to invest $50,000 in the Daltex Oil Company.
The company is a small one owned by some acquaintances of his, and
Clark has heard a rumor that Daltex will sell shares of stock publicly
within the year. If that happens he will double his money; otherwise he
will earn only the unattractive return of 5% for the year and would be
better off taking his other choice—buying a 10% savings certificate. He
believes there is about an even chance that Daltex will go public. (Resnik
57)

Let’s construct Clark’s decision matrix.



Clark’s Decision Matrix for Daltex Investment

[.5] [.5]

Daltex Goes Public Does Not EMV

Invest in Daltex $100,000 $52,500 =$76,250

Savings Certificate $55,000 $55,000 =$55,000

Now suppose that Clark has an absolutely reliable source who can tell
him how with certainty whether Daltex is going public—for a price. How
much should he pay for this information?



Well, we don’t need to do any fancy math.

We can see that if Clark learns Daltex is going public, his
EMV=$100,000, otherwise, he’d choose the savings certificate and his
EMV=$55,000. Since he thinks there are even odds that he could learn
either bit of information, we can calculate his EMV of getting the
information: $100, 000(.5) + $55, 000(.5) = $77, 500.

Since this is $1,250 more than his EMV w/o the information, that’s the
most he should pay for it.



Now suppose that Clark knows Daltex is preparing a confidential annual
report and he also knows that if they are going public there is a chance of
.9 that they will says so in the report and only a .1 chance that they will
deny it. On the other hand, if they are not going public there is a chance
of .5 that they will say they are not and .5 chance that they will lie and
say they are.

Clark knows someone who will show him the report—for a price. How
much should Clark pay to see it?



What we want to figure out is the probability that Daltex will (or will not)
go public given that they affirm (or deny) that they will in the report.

Let:
P=going public
Y=affirm they will
D=deny they will

We use Bayes’:

Pr(P|Y ) =
Pr(P)×Pr(Y |P)

Pr(P)×Pr(Y |P)+Pr(¬P)×Pr(Y |¬P)

=
.5×.9

.5×.9+.5×.5 = .64

We can also calculate:

Pr(P|D) =
Pr(P)×Pr(D|P)

Pr(P)×Pr(D|P)+Pr(¬P)×Pr(D|¬P)

=
.5×.1

.5×.1+.5×.5 = .17

Now what do we do with this information? What’s it mean?



We construct two new decision tables:

If Clark finds out they affirm:

[.64] [.36]

Daltex Goes Public Does Not EMV

Invest in Daltex $100,000 $52,500 =$82,900

Savings Certificate $55,000 $55,000 =$55,000

If Clark finds out they deny:

[.17] [.83]

Daltex Goes Public Does Not EMV

Invest in Daltex $100,000 $52,500 =$60,575

Savings Certificate $55,000 $55,000 =$55,000

In this case, we see that no matter what Clark learns about the report,
he’s not going to change his behavior. As such, he shouldn’t be willing to
pay anything at all for it.



Now let’s consider the same scenario with a few tweaks. In this case if
they are going public there is a chance of .95 that they will says so in the
report and only a .05 chance that they will deny it. On the other hand, if
they are not going public there is a chance of .95 that they will say they
are not and .05 chance that they will lie and say they are.

Clark knows someone who will show him the report—for a price. How
much should Clark pay to see it?

Pr(P|Y ) = =
.5×.95

.5×.95+.5×.05 = .95

Pr(P|D) = =
.5×.05

.5×.05+.5×.95 = .05



We again construct two new decision tables:

If Clark finds out they affirm:

[.95] [.05]

Daltex Goes Public Does Not EMV

Invest in Daltex $100,000 $52,500 =$97,625

Savings Certificate $55,000 $55,000 =$55,000

If Clark finds out they deny:

[.05] [.95]

Daltex Goes Public Does Not EMV

Invest in Daltex $100,000 $52,500 =$54,875

Savings Certificate $55,000 $55,000 =$55,000

This time, it does affect the decision, so we need to find the EMV of
gaining access to the report. Clark thinks there’s a .5 chance that the
report will say they’re going public:
.5($97, 625) + .5($55, 000) = $76, 312.50
So, $76, 312.50− $76, 250 = $62.50 is the most he should pay.



Where do the probabilities come from that enter into expected utility
calculations? Or, to put it another way, what do the statements of the
probability calculus mean?

We’ll look at four possibilities:

• Classical or Laplacean View

• Frequency View

• Propensity View

• Subjective View

Each of these interpretations can be shown to satisfy the probability
axioms, but each also has it’s problems.



Classical Laplacean View: The probability of X is the ratio of the
number of X -cases to the total number of relevant cases.

Ex. An American roulette wheel has 38 spaces numbered 00-36. The
odds of the winning number being 7 is just 7

38 , i.e., the number of
winning cases to the total number of relevant cases.

This is an objective logical view of probability.

Problem 1. It is assumed that each of the relevant cases associated with
X is equally possible. Is this a reasonable assumption? What justifies this
assumption?

Problem 2. What if there are an infinite number of equally possible
cases? Ex., I ask you to choose a real number between 0 and 1.



Long Run Frequency View: The probability of X is the frequency of
X -cases in repeated trials in the limit.

Ex. A fair coin is flipped 1000 times and comes up heads 482 times,
Pr(H) = .482.

This is an objective empirical view of probability.

Problem 1. Observed frequencies can be far from long run frequencies.
We need to identify the appropriate reference class.

Problem 2. This view does not apply nicely, if at all, to single events
that are not amenable to trials.

• Venn’s response: distinguish observed and limiting frequencies.



Propensity View: Probabilities are to be understood as claims about
the disposition of things in the world to bring about certain effects. They
are claims about the nature of the objects.

Ex. A fair die is disposed to land with six facing up once every six rolls.

This is an objective empirical view of probability.

Problem 1. We can’t observe propensities, only events. Any evidence for
claims about dispositions must come from observed events, but then this
collapses into the frequency view.

Problem 2. Humphrey’s Paradox: we can state inverted probabilities,
but because dispositions track causal relationships, we can’t invert
propensities. Propensities have a temporal direction, probabilities do not.



Subjective View: The probability of X is an agent’s degree of belief, or
credence, in X ’s occurrence.

Problem. How to measure credences?

Problem. An agent’s credences needn’t satisfy the probability axioms.



Ramsey and De Finetti:

Credences are reflected in willingness to bet. An agent has credence
Cr(X ) in X ’s occurrence just in case this agent is willing to take either
side of a bet B where for any stake $S , the loser pays the winner
$(1− Cr(X ))× S if X and $Cr(X )× S if ¬X :

Bet B

X $(1− Cr(X ))× S

¬X $Cr(X )× S



Problem. Placing a bet on an event can sometimes affect whether this
event occurs.

Problem. Betting can have collateral benefits or costs.

Problem. Utility needn’t be linear in dollars.

Problem. A bet on an event only becomes winning when its occurrence
becomes known. But this can be difficult or even impossible to verify.



A rational agent’s credences obey the probability axioms.

Many arguments have been offered for this thesis. Here is the most
famous of them:

Thm 1.6.6 (Dutch Book Theorem). An agent’s credence function
Cr : 2Ω → R[0, 1] is a probability measure just in case there doesn’t exist
a set of bets, a Dutch Book, each of which the agent is indifferent
between purchasing and selling that collectively guarantee a monetary
loss.

A rational agent is not Dutch Bookable. Thus, by the Dutch Book
Theorem, a rational agent has probabilistically coherent credences.



Partial Proof. Assume that an agent’s credence function Cr violates
Ax3 of the probability calculus; specifically, X ∧ Y = ∅ but
Cr(X ) + Cr(Y ) > Cr(X ∨ Y ). We show that this agent is Dutch
Bookable.

A bookie can bet against X and Y but bet for X ∨ Y :

Bet B1

X $(1− Cr(X ))

¬X $Cr(X )

Bet B2

Y $(1− Cr(Y ))

¬Y $Cr(Y )

Bet B3

X ∨ Y $(1− Cr(X ∨ Y ))

X ∨ Y $Cr(X ∨ Y )



Then the agent’s total payoffs are as follows:

¬X ∧ Y −$Cr(X ) + $(1− Cr(Y ))− $(1− Cr(X ∨ Y ))

X ∧ ¬Y $(1− Cr(X ))− $Cr(Y )− $(1− Cr(X ∨ Y ))

¬X ∧ ¬Y −$Cr(X )− $Cr(Y ) + $Cr(X ∨ Y )

Since Cr(X ∨ Y )− Cr(X )− Cr(Y ) < 0, the agent loses money in all
possible situations.


