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The Nash equilibria of two-player, zero-sum games have various nice
properties.

• Minimax Condition A pair of strategies is in equilibrium if (but not
only if) the outcome determined by the strategies equals the
minimal value of the row and the maximal value of the column.

• These solutions can be determined using the maximinimizer
method.

• All maximinimizer strategy pairs are Nash equilibria.

• All maximinimizer strategy pairs have the same value, and this is the
value of the game.



Let min(aj) designate the lowest utility obtainable by performing act
aj ∈ Aj .

Def 2.1.4. A maximinimizer for player j is an action a∗j ∈ Aj where
min(a∗j ) = maxaj∈Aj (min(aj)).

Thm 2.1.1. 〈a∗1 , a∗2〉 is a Nash equilibrium of the two-player zero sum
game G only if a∗1 ∈ A1 is a maximinimizer for player 1 and a∗2 ∈ A2 is a
maximinimizer for player 2.



a1 a2 a3

a1 8 8 7

a2 0 -10 -4

a3 9 0 -1

Recall that 〈a1, a3〉 is the only Nash equilibrium of this game.



a1 a2 a3

a1 8 8 7

a2 0 -10 -4

a3 9 0 -1

a1 ∈ A1 is a maximinimizer for player 1.



a1 a2 a3

a1 8 8 7

a2 0 -10 -4

a3 9 0 -1

a3 ∈ A2 is a maximinimizer for player 2.



a1 a2 a3

a1 0 8 3

a2 0 1 10

a3 -2 6 5

Recall that 〈a1, a1〉 and 〈a2, a1〉 are the Nash equilibria of this game.



a1 a2 a3

a1 0 8 3

a2 0 1 10

a3 -2 6 5

a1 ∈ A1 and a2 ∈ A1 are maximinimizers for player 1.



a1 a2 a3

a1 0 8 3

a2 0 1 10

a3 -2 6 5

a1 ∈ A2 is a maximinimizer for player 2.



Proof of Thm 2.1.1. (If you’re interested)

If 〈a∗1 , a∗2〉 is a Nash equilibrium, then u2(g(〈a∗1 , a∗2〉)) ≥ u2(g(〈a∗1 , a2〉))
for each a2 ∈ A2, so u1(g(〈a∗1 , a∗2〉)) ≤ u1(g(〈a∗1 , a2〉)) for each a2 ∈ A2.

Hence, min(a∗1) = u1(g(〈a∗1 , a∗2〉)) ≤ maxa1∈A1(min(a1)).

If 〈a∗1 , a∗2〉 is a Nash equilibrium, then u1(g(〈a∗1 , a∗2〉)) ≥ u1(g(〈a1, a∗2〉))
for each a1 ∈ A1, so u1(g(〈a∗1 , a∗2〉)) ≥ min(a1) for each a1 ∈ A1.

Hence, u1(g(〈a∗1 , a∗2〉)) ≥ maxa1∈A1(min(a1)).

Thus, min(a∗1) = u1(g(〈a∗1 , a∗2〉)) = maxa1∈A1(min(a1)). That is, a∗1 is a
maximinimizer for player 1.

Similar reasoning establishes that
min(a∗2) = u2(g(〈a∗1 , a∗2〉)) = maxa2∈A2(min(a2)).



Thm 2.1.2. If the two-player zero sum game G has a Nash equilibrium,
then a∗1 and a∗2 are maximinimizers for players 1 and 2 respectively only if
〈a∗1 , a∗2〉 is a Nash equilibrium of G.



Proof of Thm 2.1.2. (If you’re interested) Suppose that G has a
Nash equilibrium.

Then from the Proof of Thm 2.1.1, we know that
maxa1∈A1(min(a1)) = −maxa2∈A2(min(a2)).

Let maxa1∈A1(min(a1)) = v∗. Then maxa2∈A2(min(a2)) = −v∗.

Since a∗1 is a maximinimizer for 1, u1(g(〈a∗1 , a2〉)) ≥ v∗ for all a2 ∈ A2,
so u1(g(〈a∗1 , a∗2〉)) ≥ v∗.

Since a∗2 is a maximinimizer for 2, u2(g(〈a1, a∗2〉)) ≥ −v∗ for all a1 ∈ A1,
so u1(g(〈a∗1 , a∗2〉)) ≤ v∗.

Thus, u1(g(〈a∗1 , a∗2〉)) = v∗ and u2(g(〈a∗1 , a∗2〉)) = −v∗, so 〈a∗1 , a∗2〉 is a
Nash equilibrium of G.



Thm 2.1.3. 〈a∗1 , a∗2〉 and 〈a∗∗1 , a∗∗2 〉 are Nash equilibria of the two-player
zero sum game G only if u1(g(〈a∗1 , a∗2〉)) = u1(g(〈a∗∗1 , a∗∗2 〉)) (moreover,
u2(g(〈a∗1 , a∗2〉)) = u2(g(〈a∗∗1 , a∗∗2 〉))).

Less formally, all Nash equilibria of G have the same utilities. The
equilibrium payoff v∗ to player 1 is the value of the game.



Proof of Thm 2.1.3. (If you’re interested) Suppose that 〈a∗1 , a∗2〉 and
〈a∗∗1 , a∗∗2 〉 are Nash equilibria of G.

From the Proof of Thm 2.1.1, we know that
u1(g(〈a∗1 , a∗2〉)) = u1(g(〈a∗∗1 , a∗∗2 〉)) = maxa1∈A1(min(a1)).

We also know that
u2(g(〈a∗1 , a∗2〉)) = u2(g(〈a∗∗1 , a∗∗2 〉)) = maxa2∈A2(min(a2)).



a1 a2 a3

a1 8 8 7

a2 0 -10 -4

a3 9 0 -1

The value of this game is 7.



a1 a2 a3

a1 0 8 3

a2 0 1 10

a3 -2 6 5

The value of this game is 0.



Thm 2.1.4 (Coordination Theorem for Zero Sum Games).
〈a∗1 , a∗2〉 and 〈a∗∗1 , a∗∗2 〉 are Nash equilibria of the two-player zero sum
game G only if 〈a∗1 , a∗∗2 〉 and 〈a∗∗1 , a∗2〉 are Nash equilibria of G.



Proof of Thm 2.1.4. Suppose that 〈a∗1 , a∗2〉 and 〈a∗∗1 , a∗∗2 〉 are Nash
equilibria of G.

By Thm 2.1.1, we know that a∗1 ∈ A1 and a∗∗1 ∈ A1 are maximinimizers
for player 1, and a∗2 ∈ A2 and a∗∗2 ∈ A2 are maximinimizers for player 2.

Thus, by Thm 2.1.2, we know that both 〈a∗1 , a∗∗2 〉 and 〈a∗∗1 , a∗2〉 are Nash
equilibria of G.



a1 a2 a3 a4

a1 1 2 3 1

a2 0 5 0 0

a3 1 6 4 1

〈a1, a1〉 and 〈a3, a4〉 are Nash equilbria.



a1 a2 a3 a4

a1 1 2 3 1

a2 0 5 0 0

a3 1 6 4 1

So 〈a1, a4〉 and 〈a3, a1〉 are too.



Unfortunately, not every two-player zero sum game has an action profile
in equilibrium.

paper rock scissors

paper 0,0 1,-1 -1,1

rock -1,1 0,0 1,-1

scissors 1,-1 -1,1 0,0

maxa1∈A1(min(a1)) = −1

maxa2∈A2(min(a2)) = −1

maxa1∈A1(min(a1)) 6= −maxa2∈A2(min(a2)).



Fortunately, once we allow for mixed strategies, every two-player zero
sum game has a pair of pure or mixed strategies in Nash equilibirum.



A player’s choices can now be nondeterministic.

[ 14 ] [ 12 ] [ 14 ]

paper rock scissors

[ 13 ] paper 0 1 -1

[ 13 ] rock -1 0 1

[ 13 ] scissors 1 -1 0

Player 1’s mixed strategy is to play paper with probability 1
3 , rock with

probability 1
3 , and scissors with probability 1

3 .

Player 2’s mixed strategy is to play paper with probability 1
4 , rock with

probability 1
2 , and scissors with probability 1

4 .



A player’s choices can now be nondeterministic.

[ 14 ] [ 12 ] [ 14 ]

paper rock scissors

[ 13 ] paper 0 1 -1

[ 13 ] rock -1 0 1

[ 13 ] scissors 1 -1 0

Viewing mixed strategies näıvely, we can think of player 1 and player 2 as
committing themselves to randomized chance mechanisms that select
actions with various probabilities.



Each ai ∈ Ai is a pure strategy of player i .

Let 4(Ai ) designate the set of probability measures over Ai .

Each αi ∈ 4(Ai ) is a mixed strategy of player i .

αi (ai ) = pi iff player i chooses ai ∈ Ai with probability pi .

The mixed strategy αi for player i ∈ N with |Ai | = n where a1 ∈ Ai is
chosen with probability p1, a2 ∈ Ai is chosen with probability p2, ..., and
an ∈ Ai is chosen with probability pn can be written as 〈a1[p1], ..., an[pn]〉.

〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉 ∈ 4(A1).

〈paper[ 14 ], rock[ 12 ], scissors[ 14 ]〉 ∈ 4(A2).

Note that pure strategies can be regarded as special cases of mixed
strategies. For instance, rock = 〈paper[0], rock[1], scissors[0]〉.



Before we worked with action profiles in ×i∈NAi .

We will now work with mixed strategy profiles in ×i∈N4(Ai ).

For instance,
〈〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉, 〈paper[ 14 ], rock[ 12 ], scissors[ 14 ]〉〉 is a mixed
strategy profile in 4(A1)×4(A2).



What is the expected utility of a mixed strategy profile 〈α1, ..., α|N |〉 for
each player i ∈ N ?

Note that each mixed strategy profile induces a probability distribution
over the set ×i∈NAi of action profiles.

paper rock scissors

paper 0 [ 1
12 ] 1 [ 16 ] -1 [ 1

12 ]

rock -1 [ 1
12 ] 0 [ 16 ] 1 [ 1

12 ]

scissors 1 [ 1
12 ] -1 [ 16 ] 0 [ 1

12 ]

In general, the probability of pure strategy profile 〈a1, ..., a|N |〉 ∈ ×i∈NAi

is Πi∈Nαi (ai ).

The expected utility of mixed strategy profile 〈α1, ..., α|N |〉 ∈ ×i∈Nαi for
player i ∈ N is Σ〈a1,...,a|N|〉∈×i∈NAi

Πi∈Nαi (ai )ui (g(〈a1, ..., a|N |〉)).



What is the expected utility of a mixed strategy profile 〈α1, ..., α|N |〉 for
each player i ∈ N ?

Note that each mixed strategy profile induces a probability distribution
over the set ×i∈NAi of action profiles.

paper rock scissors

paper 0 [ 1
12 ] 1 [ 16 ] -1 [ 1

12 ]

rock -1 [ 1
12 ] 0 [ 16 ] 1 [ 1

12 ]

scissors 1 [ 1
12 ] -1 [ 16 ] 0 [ 1

12 ]

For example,
EU1(〈〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉, 〈paper[ 14 ], rock[ 12 ], scissors[ 14 ]〉〉) =
0× 1

12 +1× 1
6−1× 1

12−1× 1
12 +0× 1

6 +1× 1
12 +1× 1

12−1× 1
6 +0× 1

12 = 0.



What is the expected utility of a mixed strategy profile 〈α1, ..., α|N |〉 for
each player i ∈ N ?

Note that each mixed strategy profile induces a probability distribution
over the set ×i∈NAi of action profiles.

paper rock scissors

paper 0 [ 1
12 ] 1 [ 16 ] -1 [ 1

12 ]

rock -1 [ 1
12 ] 0 [ 16 ] 1 [ 1

12 ]

scissors 1 [ 1
12 ] -1 [ 16 ] 0 [ 1

12 ]

For example,
EU2(〈〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉, 〈paper[ 14 ], rock[ 12 ], scissors[ 14 ]〉〉) =
0× 1

12−1× 1
6 +1× 1

12 +1× 1
12 +0× 1

6−1× 1
12−1× 1

12 +1× 1
6 +0× 1

12 = 0.



We can now extend the concept of Nash equilibrium to cover mixed
strategies.

Def 2.1.6. A mixed strategy Nash equilibrium of G is a mixed strategy
profile α∗ ∈ ×i∈Nαi such that for every player j ∈ N , the following
condition holds:

EUj(〈α∗j , α∗−j〉) ≥ EUj(〈αj , α
∗
−j〉) for each αj ∈ 4(Aj).

In other words, given the other players’ equilibrium mixed strategy profile
α∗−j , the equilibrium mixed strategy α∗j of player j is optimal.

Osborne and Rubinstein: “No player can profitably deviate, given the
actions of the other players.”

Pure strategy Nash equilibria can be regarded as special cases of mixed
strategy Nash equilibria.



[ 14 ] [ 12 ] [ 14 ]

paper rock scissors

[ 13 ] paper 0 1 -1

[ 13 ] rock -1 0 1

[ 13 ] scissors 1 -1 0

Is 〈〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉, 〈paper[ 14 ], rock[ 12 ], scissors[ 14 ]〉〉 a mixed
strategy Nash equilibrium of Rock, Paper, & Scissors?

No. Player 1 does well to play 〈paper[1], rock[0], scissors[0]〉 instead.

EU1(〈〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉, 〈paper[ 14 ], rock[ 12 ], scissors[ 14 ]〉〉) = 0.

EU1(〈〈paper[1], rock[0], scissors[0]〉, 〈paper[ 14 ], rock[ 12 ], scissors[ 14 ]〉〉) = 1
4 .



[ 13 ] [ 13 ] [ 13 ]

paper rock scissors

[ 13 ] paper 0 1 -1

[ 13 ] rock -1 0 1

[ 13 ] scissors 1 -1 0

Is 〈〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉, 〈paper[ 13 ], rock[ 13 ], scissors[ 13 ]〉〉 a mixed
strategy Nash equilibrium of Rock, Paper, & Scissors?

Yes. If either player plays the equiprobable mixed strategy, the expected
utilities of both players are 0.



[ 12 ] [ 12 ]

a1 a2

[ 12 ] a1 6 3

[ 12 ] a2 2 4

Is 〈〈a1[ 12 ], a2[ 12 ]〉, 〈a1[ 12 ], a2[ 12 ]〉〉 a mixed strategy Nash equilibrium?

No. EU1(〈〈a1[ 12 ], a2[ 12 ]〉, 〈a1[ 12 ], a2[ 12 ]〉〉) = 15
4 .

But EU1(〈〈a1[1], a2[0]〉, 〈a1[ 12 ], a2[ 12 ]〉〉) = 18
4 .

Does this game even have any mixed strategy Nash equilibria?



Thm 2.1.5 (Maximin Theorem for Two-player Zero Sum Games).
Every two-person zero sum game has at least one mixed strategy Nash
equilibrium. Moreover, the expected utilities of each Nash equilibrium
mixed strategy profile are the same.



Partial Proof of Thm 2.1.5. We show that any 2x2 zero sum game in
standard form has a mixed strategy Nash equilibrium.

a1 a2

a1 a b

a2 c d

a, b, c , d ∈ R[0,∞) where a > c , d > b, and d > c .

Note that this game does not have any pure strategy Nash equilibria.



[q] [1− q]

a1 a2

[p] a1 a b

[1− p] a2 c d

EU1(〈〈a1[p], a2[1− p]〉, 〈a1[q], a2[1− q]〉〉) =

apq + bp(1− q) + c(1− p)q + d(1− p)(1− q) =

apq + bp − bpq + cq − cpq + d − dp − dq + dpq =

(a− c + d − b)pq − (d − b)p − (d − c)q + d =

Apq − Bp − Cq + D =

A((p − C
A )(q − B

A )) + DA−BC
A

where
A = a− b + d − c > 0, B = d − b > 0, C = d − c > 0, D = d > 0.



EU1(〈〈a1[p], a2[1−p]〉, 〈a1[q], a2[1−q]〉〉) = A((p− C
A )(q− B

A )) + DA−BC
A .

EU2(〈〈a1[p], a2[1−p]〉, 〈a1[q], a2[1−q]〉〉) = −A((p− C
A )(q− B

A ))− DA−BC
A .

**Player 1 can prevent EU1 from falling below DA−BC
A by setting p = C

A .

**Player 2 can prevent EU2 from falling below −DA−BC
A by setting

q = B
A .

〈〈a1[CA ], a2[1− C
A ]〉, 〈a1[BA ], a2[1− B

A ]〉〉 is a mixed strategy equilibrium.

The value of the game is DA−BC
A .



a1 a2

a1 6 3

a2 2 4

What is a mixed strategy Nash equilibrium of this game?



a1 a2

a1 6 3

a2 2 4

A = a− b + d − c =
B = d − b =
C = d − c =
D = d =

p = C
A =

q = B
A =

EU1(〈〈a1[p], a2[1− p]〉, 〈a1[q], a2[1− q]〉〉) =



a1 a2

a1 6 3

a2 2 4

A = a− b + d − c = 5
B = d − b = 1
C = d − c = 2
D = d = 4

p = C
A = 2

5

q = B
A = 1

5

EU1(〈〈a1[ 25 ], a2[ 35 ]〉, 〈a1[ 15 ], a2[ 45 ]〉〉) = 2
25×6+ 8

25×3+ 3
25×2+ 12

25×4 = 90
25

EU1(〈〈a1[ 25 ], a2[ 35 ]〉, 〈a1[ 15 ], a2[ 45 ]〉〉) = DA−BC
A = 18

5



a1 a2

a1 -3 1

a2 2 0

What is a mixed strategy Nash equilibrium of this game?



a1 a2

a1 0 4

a2 5 3

First translation: add the constant +3.



a1 a2

a2 5 3

a1 0 4

Second translation: switch rows.



a1 a2

a2 5 3

a1 0 4

A = a− b + d − c =
B = d − b =
C = d − c =
D = d =

p = C
A =

q = B
A =

EU1(〈〈a1[p], a2[1− p]〉, 〈a1[q], a2[1− q]〉〉) = DA−BC
A =



a1 a2

a2 5 3

a1 0 4

A = a− b + d − c = 6
B = d − b = 1
C = d − c = 4
D = d = 4

p = C
A = 2

3

q = B
A = 1

6

EU1(〈〈a1[ 13 ], a2[ 23 ]〉, 〈a1[ 16 ], a2[ 56 ]〉〉) = DA−BC
A = 20

6



Before we’re finished, we need to transform it back to the original
utilities!

a1 a2

a1 -3 1

a2 2 0

EU1(〈〈a1[ 13 ], a2[ 23 ]〉, 〈a1[ 16 ], a2[ 56 ]〉〉) = 20
6 − 3 = 1

3



And now for a shortcut.

We now have a proof that every two-by-two, two-person, zero-sum game
has at least one pure or mixed-strategy Nash equilibrium. So we can
construct a recipe for finding them:

1. First, use the maximin strategy to determine if the game has any
pure strategy Nash equilibria. If it does, that’s the solution to the
game. The value of those equilibria is the value of the game.



2. If this strategy comes up empty, then, assume the game has the
following structure:

[q] [1− q]

C1 C2

[p] R1 a b

[1− p] R2 c d

Unlike the standard form game needed for the proof, there are no
restrictions on a, b, c , and d in this strategy.

Our aim is to find values for p and q for which
(pR1, (1− p)R2); (qC1, (1− q)C2)



It turns out that:

p = (d − c)/[(a + d)− (b + c)]

and

q = (d − b)/[(a + d)− (b + c)]

The value of the game is ap + c(1− p).

Why does this work? When Row plays her half of an equilibrium
mixed-strategy pair, she fixes the value of the game no matter what Col
does. And the same goes for Col. If this is true, the EU of Row’s
equilibrium strategy against C1 must be the same as the EU of that
strategy against C2, and the same holds for Col.

The EU for Row against C1 is ap + (1− p)c and against C2 is
bp + (1− p)d .

Since they are equal, we have

ap + (1− p)c = bp + (1− p)d .

Solving for p gives us the equation above, and we can do the same thing
for q.



a1 a2

a1 -3 1

a2 2 0

What is a mixed strategy Nash equilibrium of this game?



a1 a2

a1 -3 1

a2 2 0

p = (d − c)/[(a + d)− (b + c)] =

and

q = (d − b)/[(a + d)− (b + c)] =

The value of the game is ap + c(1− p) =



a1 a2

a1 -3 1

a2 2 0

p = (d − c)/[(a + d)− (b + c)] = (0−2)
(−3+0)−(1+2) = −2

−6 = 1
3

and

q = (d − b)/[(a + d)− (b + c)] = 0−1
(−3+0)−(1+2) = −1

−6 = 1
6

The value of the game is ap + c(1− p) = −3( 1
3 ) + 2(1− 1

3 ) = 1
3


